Film Capacitors

EMI Suppression Capacitors (MKP)

Series/Type: B32921C/D ... B32928C/D
Date: August 2015

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Typical applications

- X2 class for interference suppression
- "Across the line" applications

Climatic

- Max. operating temperature: $110^{\circ} \mathrm{C}$
- Climatic category (IEC 60068-1):

40/105/56 (ENEC10)
40/110/56 (ENEC15)

Construction

Dielectric: polypropylene (MKP)

- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL $94 \mathrm{~V}-0$)

Features

- Very small dimensions
- Self-healing properties
- RoHS-compatible
- Halogen-free capacitors available on request

Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request

Marking

Manufacturer's logo, lot number, date code, rated capacitance (coded), cap. tolerance (code letter),
rated AC voltage,
series number, sub-class (X2),
dielectric code (MKP), climatic category, passive flammability category, approvals.

Delivery mode

Bulk (untaped)
Taped (Ammo pack or reel)
For taping details, refer to chapter "Taping and packing"

Dimensional drawings

Drawing 1

Drawing 2

Dimensions in mm

$$
P_{1}=20.3 \mathrm{~mm}
$$

Lead spacing e	Lead diameter $d_{1} \pm 0.05$	Type	Drawing
10	0.6	B32921	1
15	0.8	B32922	1
22.5	0.8	B32923	1
27.5	0.8	B32924	1
37.5	1.0	B32926	$1 / 2^{1)}$
52.5	1.2	B32928	2

[^0]

Marking Examples

$\mathrm{C} \leq 10 \mu \mathrm{~F}$

KMK1541－3

$$
C>10 \mu \mathrm{~F}
$$

Approvals

Approval marks	Standards	Certificate
星10	EN 60384－14，IEC 60384－14， Ed． 3	40010694 （approved by VDE） $(C \leq 10 \mu F)$
怱15	EN 60384－14，IEC 60384－14， Ed． 3	E97863（approved by UL）
7	UL 1414 ／UL 1283	E97863／E157153
c	CSA C22．2 No． 1 ／No． 8	E97863／E157153（approved by UL）
（60）	CQC（GB／T 14472－1998）	CQC06001015331／CQC06001016454 $(\mathrm{C} \leq 10 \mu \mathrm{~F})$
${ }^{\prime} \geqslant \lambda_{\text {us }}$	UL 60384－14，CSA E60384－14	E97863（approved by UL）

Notes：
Effective January 2014，only for EMI supression capacitors：
－UL 60384－14 certification replaces both UL 1414 and UL 1283 standards．
－CSA C22．2 No． 1 and CSA C22．s No． 8 are replaced by CSA E60384－14．
－References like 1414， 1283 are removed from the capacitor marking
Capacitors under UL1414，UL1283 produced during or before 2013，are accepted under UL scope．
Capacitors under CSA C22．2 No． 1 ／No． 8 produced during or before 2013， are accepted under cUL scope．

Overview of available types

Lead spacing	10 mm	15 mm	22.5 mm	27.5 mm	37.5 mm	52.5 mm
Type	B32921	B32922	B32923	B32924	B32926	B32928
$\mathrm{C}_{\mathrm{R}}(\mu \mathrm{F})$						
0.010						
0.022						
0.033						
0.047						
0.068						
0.10						
0.15						
0.22						
0.33						
0.47						
0.68						
1.0						
1.5						
2.2						
3.3						
3.9						
4.7						
5.6						
6.8						
8.2						
10						
15						
20						
25						
30						

Ordering codes and packing units

Lead spacing mm	C_{R} $\mu \mathrm{F}$	Max. dimensions $\mathrm{w} \times \mathrm{h} \times \mathrm{l}$ mm	Ordering code (composition see below)	Straight terminals Ammo pack pcs./ MOQ	Straight terminals, Reel pcs./ MOQ	Straight terminals, Untaped pcs./ MOQ	Pins
10	0.010	$4.0 \times 9.0 \times 13.0$	B32921C3103+***	4000	6800	4000	2
	0.022	$4.0 \times 9.0 \times 13.0$	B32921C3223+***	4000	6800	4000	2
	0.033	$4.0 \times 9.0 \times 13.0$	B32921C3333+***	4000	6800	4000	2
	0.047	$5.0 \times 11.0 \times 13.0$	B32921C3473+***	3320	5200	4000	2
	0.068	$6.0 \times 12.0 \times 13.0$	B32921C3683+***	2720	4400	4000	2
	0.10	$6.0 \times 12.0 \times 13.0$	B32921C3104M***	2720	4400	4000	2
15	0.033	$5.0 \times 10.5 \times 18.0$	B32922C3333K***	4680	5200	4000	2
	0.047	$5.0 \times 10.5 \times 18.0$	B32922C3473K***	4680	5200	4000	2
	0.068	$5.0 \times 10.5 \times 18.0$	B32922C3683K***	4680	5200	4000	2
	0.10	$5.0 \times 10.5 \times 18.0$	B32922C3104+***	4680	5200	4000	2
	0.15	$6.0 \times 12.0 \times 18.0$	B32922C3154+***	3840	4400	4000	2
	0.22	$7.0 \times 12.5 \times 18.0$	B32922C3224+***	3320	3600	4000	2
	0.33	$8.0 \times 14.0 \times 18.0$	B32922C3334M***	2920	3000	2000	2
	0.33	$8.5 \times 14.5 \times 18.0$	B32922D3334K**	2720	2800	2000	2
	0.47	$9.0 \times 17.5 \times 18.0$	B32922C3474+***	2560	2800	2000	2
	0.68	$11.0 \times 18.5 \times 18.0$	B32922C3684+***	-	2200	1000	2

- Preferred type

MOQ = Minimum Order Quantity, consisting of 4 packing units.
Further intermediate capacitance values on request.

Composition of ordering code

$$
\begin{aligned}
+= & \text { Capacitance tolerance code: } \\
& M= \pm 20 \% \\
& K= \pm 10 \% \\
& =\quad \text { (Closer tolerances on request) }
\end{aligned}
$$

Ordering codes and packing units

Lead spacing mm	C_{R} $\mu \mathrm{F}$	Max. dimensions $\mathrm{w} \times \mathrm{h} \times \mathrm{l}$ mm	Ordering code (composition see below)	Straight terminals Ammo pack pcs./ MOQ	Straight terminals, Reel pcs./ MOQ	Straight terminals, Untaped pcs./ MOQ	Pins
22.5	0.22	$6.0 \times 15.0 \times 26.5$	B32923C3224+***	2720	2800	2880	2
	0.33	$6.0 \times 15.0 \times 26.5$	B32923C3334M***	2720	2800	2880	2
	0.33	$7.0 \times 16.0 \times 26.5$	B32923D3334K***	2320	2400	2520	2
	0.47	$8.5 \times 16.5 \times 26.5$	B32923C3474+***	1920	2000	2040	2
	0.68	$10.5 \times 16.5 \times 26.5$	B32923C3684+***	1560	1600	2160	2
	1.0	$11.0 \times 20.5 \times 26.5$	B32923C3105+***	1480	1400	2040	2
	1.5	$12.0 \times 22.0 \times 26.5$	B32923C3155M***	-	-	1800	2
	2.2	$14.5 \times 29.5 \times 26.5$	B32923C3225+***	-	-	1040	2
27.5	0.68	$11.0 \times 19.0 \times 31.5$	B32924C3684+***	-	1400	1280	2
	1.0	$11.0 \times 19.0 \times 31.5$	B32924C3105+***	-	1400	1280	2
	1.5	$12.5 \times 21.5 \times 31.5$	B32924C3155+***	-	1200	1120	2
	2.2	$14.0 \times 24.5 \times 31.5$	B32924C3225+***	-	-	1040	2
	3.3	$16.0 \times 32.0 \times 31.5$	B32924D3335K***	-	-	880	2
	3.3	$18.0 \times 27.5 \times 31.5$	B32924C3335M***	-	-	800	2
	4.7	$18.0 \times 33.0 \times 31.5$	B32924C3475M***	-	-	800	2
	4.7	$21.0 \times 31.0 \times 31.5$	B32924D3475K***	-	-	720	2
	5.6	$22.0 \times 36.5 \times 31.5$	B32924C3565+***	-	-	784	2

- Preferred type

$M O Q=$ Minimum Order Quantity, consisting of 4 packing units.
Further intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:
$\mathrm{M}= \pm 20 \%$
$K= \pm 10 \%$
$=$ (Closer tolerances on request)

Ordering codes and packing units

Lead spacing mm	C_{R}	Max. dimensions $\mathrm{w} \times \mathrm{h} \times \mathrm{I}$ mm	Ordering code (composition see below)	Straight terminals, Ammo pack pcs./	Straight terminals, Reel	Straight terminals, Ucs./	Pins
UOQ							

- Preferred type

$M O Q=$ Minimum Order Quantity, consisting of 4 packing units.
Further intermediate capacitance values on request.

Composition of ordering code

```
+= Capacitance tolerance code:
    M = \pm20%
    K= \pm10%
    = (Closer tolerances on request)
```


Technical data

Reference standard: IEC / UL 60384-14. All data given at $\mathrm{T}=20^{\circ} \mathrm{C}$ unless otherwise specified.

Max. operating temperature $\mathrm{T}_{\text {op,max }}$	$+110{ }^{\circ} \mathrm{C}$			
Dissipation factor $\tan \delta\left(\right.$ in 10^{-3}) at $20^{\circ} \mathrm{C}$ (upper limit values)		$\mathrm{C}_{\mathrm{R}} \leq 0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}<\mathrm{C}_{\mathrm{R}} \leq 2.2 \mu \mathrm{~F}$	$\mathrm{C}_{\mathrm{R}}>2.2 \mu \mathrm{~F}$
	at 1 kHz	1.0	1.0	2.0
	100 kHz	5.0	-	-
Insulation resistance $\mathrm{R}_{\text {ins }}$ or time constant $\tau=\mathrm{C}_{\mathrm{R}} \cdot \mathrm{R}_{\text {ins }}$ at $20^{\circ} \mathrm{C}$, rel. humidity $\leq 65 \%$ (minimum as-delivered values)	$\mathrm{C}_{\mathrm{R}} \leq 0.33 \mu \mathrm{~F}$	$\mathrm{C}_{\mathrm{R}}>0.33 \mu \mathrm{~F}$		
	$100000 \mathrm{M} \Omega 30000 \mathrm{~s}$	30000 s		
DC test voltage	2121 V , 2 s ($\mathrm{C} \leq 10 \mu \mathrm{~F}) / 1312 \mathrm{~V}, 2 \mathrm{~s}$ ($\mathrm{C}>10 \mu \mathrm{~F})$			

The repetition of this DC voltage test may damage the capacitor. Special care must be taken in case of use several capacitors in a parallel configuration.

Passive flammability category	B
Maximum continuous DC voltage V_{DC}	630 V
Maximum continuous AC voltage V_{AC}	$310 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Rated AC voltage (IEC 60384-14)	$305 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Operating AC voltage $\mathrm{V}_{\text {op }}$ at high temperature	$\mathrm{T}_{\mathrm{A}} \leq 110^{\circ} \mathrm{C}$ 源 $\mathrm{V}_{\text {op }}=\mathrm{V}_{\text {AC }} \quad$ (continuously)
	$\mathrm{T}_{\mathrm{A}} \leq 110^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {op }}=1.25 \cdot \mathrm{~V}_{\text {AC }} \quad(1000 \mathrm{~h})$
Damp heat test Limit values after damp heat test	56 days $/ 40^{\circ} \mathrm{C} / 93 \%$ relative humidity Capacitance change $\|\Delta \mathrm{C} / \mathrm{C}\|$ $\leq 5 \%$ Dissipation factor change $\Delta \tan \delta$ $\leq 0.5 \cdot 10^{-3}$ (at 1 kHz) Insulation resistance $\mathrm{R}_{\text {ins }}$ $\leq 1.0 \cdot 10^{-3}$ (at 10 kHz) or time constant $\tau=\mathrm{C}_{\mathrm{R}} \cdot \mathrm{R}_{\text {ins }}$ $\geq 50 \%$ of minimum as-delivered values

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $\mathrm{V} / \mu \mathrm{s}$.
" k_{0} " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $\mathrm{V}^{2} / \mu \mathrm{s}$.

Note:
The values of $d V / d t$ and k_{0} provided below must not be exceeded in order to avoid damaging the capacitor.

dV/dt and \mathbf{k}_{0} values

Lead spacing	10 mm	15 mm	22.5 mm	27.5 mm	37.5 mm	52.5 mm
$\mathrm{dV} / \mathrm{dt}$ in $\mathrm{V} / \mu \mathrm{s}$	475	340	170	120	80	50
k_{0} in $\mathrm{V}^{2} / \mu \mathrm{s}$	408500	292400	146200	103200	68800	43200

Impedance \mathbf{Z} versus frequency \mathbf{f}

(typical values)

Testing and Standards

Test	Reference	Conditions of test	Performance requirements		
Electrical Parameters	IEC 60384-14	Voltage Proof: Between terminals: $4.3 \times \mathrm{V}_{\mathrm{R}}(\mathrm{DC}), 1$ min Terminals and enclosure: $2 \mathrm{~V}_{\mathrm{R}}+1500 \mathrm{VAC}$ Insulation resistance, $\mathrm{R}_{\text {INs }}$	Within specified limits		
Capacitance, C					
Dissipation factor, tan δ				\quad	
:---					

B32921C/D ... B32928C/D

Mounting guidelines

1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.
Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at $155^{\circ} \mathrm{C}$). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	$235 \pm 5^{\circ} \mathrm{C}$
Soldering time	$2.0 \pm 0.5 \mathrm{~s}$
Immersion depth	$2.0+0 /-0.5 \mathrm{~mm}$ from capacitor body or seating plane
Evaluation criteria:	Wetting of wire surface by new solder $\geq 90 \%$, free-flowing solder

1.2 Resistance to soldering heat

Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A.
Conditions:

Series	Solder bath temperature	Soldering time
MKT boxed (except $2.5 \times 6.5 \times 7.2 \mathrm{~mm}$) coated uncoated (lead spacing > 10 mm)	$260 \pm 5^{\circ} \mathrm{C}$	$10 \pm 1 \mathrm{~s}$
MFP MKP (lead spacing $>7.5 \mathrm{~mm}$)		
MKT boxed (case $2.5 \times 6.5 \times 7.2 \mathrm{~mm}$)		$5 \pm 1 \mathrm{~s}$
MKP (lead spacing $\leq 7.5 \mathrm{~mm}$) MKT uncoated (lead spacing $\leq 10 \mathrm{~mm}$) insulated (B32559)		<4 s recommended soldering profile for MKT uncoated (lead spacing $\leq 10 \mathrm{~mm}$) and insulated (B32559)

[^0]: 1) A few individual types only
